Comprehensive analysis of the stopping power of antiprotons and negative muons in He and H2 gas targets

نویسندگان

  • G Schiwietz
  • U Wille
  • R Dı́ez Muiño
  • P D Fainstein
  • P L Grande
چکیده

A comprehensive analysis of the stopping power of antiprotons and negative muons in He and H2 gas targets for projectile velocities (equivalent antiproton energies) ranging from about 0.1 to 10 au (0.25 keV to 2.5 MeV) is performed. Recent experimental data are contrasted with theoretical results obtained from different approaches. The electronic stopping power is evaluated within the coupled-state atomic-orbital method and the distorted-wave Born approximation as well as, for low projectile velocities, within a generalized adiabatic-ionization model that takes into account collisional-broadening effects. The departure of the antiproton stopping power from the proton stopping power (‘Barkas effect’), observed for intermediate projectile velocities, is discussed. The contribution to the stopping power arising from energy transfer to the translational degrees of freedom of the target system (‘nuclear stopping’) is evaluated. Our analysis results in a good understanding of the stopping mechanisms of negative heavy particles in gases, in particular in He. Discrepancies between theory and experiment in the H2 case are attributed to effects of the molecular structure of the target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stopping power of antiprotons in H, H2, and He targets

The stopping power of antiprotons in atomic and molecular hydrogen as well as helium was calculated in an impact-energy range from 1 keV to 6.4 MeV. In the case of H2 and He the targets were described with a single-active electron model centered on the target. The collision process was treated with the close-coupling formulation of the impact-parameter method. An extensive comparison of the pre...

متن کامل

Local Field Correction Effect on Dicluster Stopping Power in a Strongly Coupled Two-Dimensional Electron Gas System

We calculate the stopping power for heavy-ion diclusters moving in a strongly coupled two-dimensional electron gas system by using the local field corrected dielectric function at finite temperature. We obtain a parameterized local field correction factor based on a relation between the thermal compressibility and exchange-correlation energy in two-dimension. The interpolated parameter is deriv...

متن کامل

A performance study of the conceptual implementation of the GEM-tracking detector in Monte Carlo simulation

  PANDA experiment (antiProton ANnihilation at DArmstadt) is one of the key projects of the future FAIR facilities to investigate the reactions of antiprotons with protons and nuclear targets.   experiment is designed to serve as a completely extraordinary physical potential due to exploiting the availability of cold and high-intensity beams of antiprotons. One of the significant parts of the  ...

متن کامل

Collisions of low-energy antiprotons and protons with atoms and molecules

Antiproton (p̄) collisions have evolved to a powerful tool for the testing of dynamic electron correlations in atoms and molecules. While advances in the understanding of p̄ collisions with the simplest oneand two-electron atoms, H and He, have been achieved experiment and theory did not agree for low-energy p̄ + He collisions (< 40 keV), stimulating a vivid theoretical activity. On the other hand...

متن کامل

Direct excitations of He+ and Li++ ions by collisions with protons or antiprotons

The impact parameter formalism of the single-center close-coupling, first-, and second-order Born approximations have been applied to investigate direct excitations of Helium He+(2s) and Lithium Li++(2s) ions by colliding with protons or antiprotons. The total 3s, 3p, and 3d scaled excitation cross sections are calculated in the scaled impact energy region (2 to 1000 keV). The present work aims...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996